Wir drucken Ihnen Ihr 3D-Modell zu einem fairen Preis für jeden der seine Ideen greifbar in den Händen halten möchte.

Vorteile vom 3D Druck:

Was eben noch als Grafik an Ihrem Bildschirm zu sehen war, können Sie Stunden bzw. Tage später bereits in Ihren Händen halten.

  • Zeit- und Kostenvorteile bereits während der Entwicklungs und Produktentstehungs Fase.
  • Fehlererkennung in der Produktplanung bereits im Vorfeld
  • Design und Funktionalitäts Test bereits währende der Entwicklung
  • Kostenersparniss von Teuren Serien Werkzeugänderungen

Die Verfahren

  • FDM (Fused Filament Fabrication)
  • SLA ( Kunststoffflüssigkeit)
  • SLS / SLM  ( Selektives Lasersintern, Kunststoff-, Metallpulver, Kunststoffbeschichteter Formsand)
  • Polyjet / Objet

Verfahren FDM (Fused Filament Fabrication)

Im „Schmelzschicht“-Verfahren wird zunächst, ähnlich wie bei einem normalen Drucker, ein Raster von Punkten auf eine Fläche aufgetragen. Erzeugt werden die Punkte dabei durch die Verflüssigung eines drahtförmigen Kunststoff- oder Wachsmaterials durch Erwärmung, der Aufbringung durch Extrudieren mittels einer Düse sowie einer anschließenden Erhärtung durch Abkühlung an der gewünschten Position in einem Raster der Arbeitsebene. Für das FDM-Verfahren können Formwachse und Thermoplaste wie Polyethylen, Polypropylen, Polylactid, ABS, PETG und thermoplastische Elastomere eingesetzt werden.

Verfahren SLA (Stereolithografie, Flüssigkeit))

Ein lichtaushärtender Kunststoff (Photopolymer), zum Beispiel Acryl-, Epoxid- oder Vinylesterharz, wird von einem Laser in dünnen Schichten ausgehärtet. Die Prozedur geschieht in einem Bad, das mit den Basismonomeren des lichtempfindlichen (photosensitiven) Kunststoffes gefüllt ist. Nach jedem Schritt wird das Werkstück einige Millimeter in die Flüssigkeit abgesenkt und auf eine Position zurückgefahren, die um den Betrag einer Schichtstärke unter der vorherigen liegt. Der flüssige Kunststoff über dem Teil wird dann durch einen Wischer, bzw. Rakel, gleichmäßig verteilt. Dann fährt ein Laser, der von einem Computer über bewegliche Spiegel gesteuert wird, auf der neuen Schicht über die Flächen, die ausgehärtet werden sollen. Nach dem Aushärten erfolgt der nächste Schritt, sodass nach und nach ein dreidimensionales Modell entsteht.

Verfahren SLS / SLM ( Selektives Lasersintern, Kunststoff-, Metallpulver, Kunststoffbeschichteter Formsand)

Lasersintern ist ein generatives Schichtbauverfahren: das Werkstück wird Schicht für Schicht aufgebaut. Durch die Wirkung der Laserstrahlen können so beliebige dreidimensionale Geometrien auch mit Hinterschneidungen erzeugt werden, z. B. Werkstücke, die sich in konventioneller mechanischer oder gießtechnischer Fertigung nicht herstellen lassen.

Wegen des hohen maschinellen Aufwands und insbesondere der vom generierten Volumen abhängenden Prozesszeiten, werden die Verfahren besonders zum Fertigen von Prototypen und kleinen Stückzahlen komplizierter Teile verwendet. Der Trend geht allerdings dahin, die Technologie auch als Rapid-Manufacturing- bzw. Rapid Tooling-Verfahren zur schnellen Erzeugung von Werkzeugen und von Funktionsbauteilen zu nutzen. Der pulverförmige Werkstoff ist beispielsweise Polyamid 12 oder ein anderer Kunststoff, ein kunststoffbeschichteter Formsand, ein Metall- oder ein Keramikpulver.

Ein großer Vorteil beim Lasersinern ( SLS) ist, dass Stützstrukturen, wie sie bei vielen anderen Verfahren des Rapid-Prototyping nötig sind, entfallen. Das Bauteil wird während seiner Entstehung stets vom umgebenden Pulver gestützt. Am Ende des Prozesses kann das verbleibende Pulver dann einfach abgeklopft und teilweise für den nächsten Lauf wiederverwendet werden. Eine vollständige Wiederverwendung ist derzeit, besonders bei Kunststoffpulvern nicht möglich, da diese durch den Prozess an Qualität verlieren.

Durch selektives Laserschmelzen (SLM) gefertigte Bauteile zeichnen sich durch große spezifische Dichten (> 99 %) aus. Dies gewährleistet, dass die mechanischen Eigenschaften des generativ hergestellten Bauteils weitgehend denen des Grundwerkstoffs entsprechen.
Es kann aber auch gezielt, nach bionischen Prinzipien oder zur Sicherstellung eines partiellen E-Moduls, ein Bauteil mit selektiven Dichten gefertigt werden. Im Leichtbau der Luft- und Raumfahrt und bei Körperimplantaten sind solche selektive Elastizitäten innerhalb eines Bauteils oft gewünscht und mit konventionellen Verfahren so nicht herstellbar.

Gegenüber konventionellen Verfahren (Gussverfahren) zeichnet sich das Laserschmelzen dadurch aus, dass Werkzeuge oder Formen entfallen (formlose Fertigung) und dadurch die Produkteinführungszeit reduziert werden kann. Ein weiterer Vorteil ist die große Geometriefreiheit, die Bauteilformen ermöglicht, die mit formgebundenen Verfahren nicht oder nur mit großem Aufwand herstellbar sind. Des Weiteren können Lagerkosten reduziert werden, da spezifische Bauteile nicht bevorratet werden müssen, sondern bei Bedarf generativ hergestellt werden.

Verfahren Polyjet / Objet ( UV Licht aushärtende Flüssigkeiten)

Beim Polyjet 3D-Druck wird ein lichtaushärtendes Polymer durch einen Druckkopf mit mehreren Düsen auf eine Werkplattform aufgetragen. Das noch flüssige Material wird durch UV-Licht sofort ausgehärtet. Danach fährt die Plattform um die Dicke einer Schicht nach unten. Anschließend wird eine weitere Schicht auf die bereits ausgehärtete Schicht aufgetragen. Dieser Prozess wird so lange wiederholt, bis das Modell vollständig gedruckt wurde. Dadurch, dass das Material in Tropfen durch die Düsen aufgetragen wird, zerläuft es vor dem Härtungsvorgang. Somit sind mit bloßem Auge, nahezu keine Rillen im Werkstück zu erkennen und die Oberfläche ist sehr glatt.
Der Polyjet-Drucker besitzt oft mehrere Druckköpfe. Der große Vorteil besteht darin, dass mit verschiedenen Materialien oder auch in verschiedenen Farben gedruckt werden kann. Falls das Modell überhängende Bestandteile hat, werden diese mittels Supportstrukturen abgestützt. Diese Supportstrukturen oder auch Stützkonstruktionen müssen nach der Fertigung entfernt werden.

 

Darüber hinaus lassen sich die Meisten Materialien der verschiedenen Verfahren spanend bearbeiten, kleben oder lackieren.

Der Geometrie der Modelle sind dabei kaum Grenzen gesetzt. Die Bauraumgröße ist jedoch begrenzt. Größere Modelle können mehrteilig gedruckt und zusammengefügt werden.

Folgende Datenimport Schnittstellen sind möglich:

Step, Iges, Parasolid, Visi, STL, DXF, DWG, oder andere gängige 3D Datenformate

Ihre Daten können Sie uns via Email oder auf unserem Server zukommen lassen. Kontaktieren Sie uns einfach dazu.